当前位置: > 已知函数f(x)=x^2+ax+3-a,当x属于[-2,2]时,函数至少有一个零点,求a的范围....
题目
已知函数f(x)=x^2+ax+3-a,当x属于[-2,2]时,函数至少有一个零点,求a的范围.

提问时间:2021-03-24

答案
不妨设t∈[-2,2],且f(t)=0.
则t²+at+3-a=0.
a(1-t)=t²+3
=(1-t)²-2(1-t)+4.
显然,t≠1.
∴a+2=(1-t)+[4/(1-t)]
分类讨论
【1】当-2≤t<1时,0<1-t≤3.
由“对勾函数单调性”可知:
(1-t)+[4/(1-t)]≥4.等号仅当t=-1时取得.
∴a+2≥4.
a≥2.
【2】当1<t≤2时,0<t-1≤1.
由“对勾函数单调性”可知
(t-1)+[4/(t-1)]≥5.等号仅当t=2时取得.
∴-(2+a)=(t-1)+[4/(t-1)]≥5.
∴a≤-7.
综上可知:a∈(-∞,-7]∪[2,+∞).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.