当前位置: > 证明2是无理数....
题目
证明
2
是无理数.

提问时间:2021-03-24

答案
证明:用反证法.
假设
2
不是无理数,所以
2
必为有理数,
2
=
p
q
(p、q是互质的自然数),两边平方有,p2=2q2,①,
所以p一定是偶数.设p=2m(m是自然数),代入①得
4m2=2q2,q2=2m2
所以q也是偶数,p、q均为偶数和p与q互质矛盾,
所以
2
不是有理数,所以
2
是无理数.
因为证明一个实数为无限不循环小数是一件极难办到的事.由于有理数与无理数共同组成了实数集,且二者是矛盾的两个对立面,所以,判定一个实数是无理数时,常常采用反证法.假设
2
不是无理数,所以
2
必为有理数,设
2
=
p
q
(p、q是互质的自然数),两边平方可得到p2=2q2,再根据p、q均为偶数和p与q互质矛盾即可得出结论.

有理数无理数的概念与运算.

本题考查的是有理数与无理数的概念,解答此类题目时要注意反证法的使用.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.