当前位置: > 按照公式∫∫f(x,y)dxdy=∫dx∫f(x,y)dy,但是做题时f(x,y)=x^2,为什么这时∫∫f(x,y)dxdy=∫x^2dx∫dy了...
题目
按照公式∫∫f(x,y)dxdy=∫dx∫f(x,y)dy,但是做题时f(x,y)=x^2,为什么这时∫∫f(x,y)dxdy=∫x^2dx∫dy了

提问时间:2021-03-24

答案
已知:f(x,y)=x^2
则∫∫f(x,y)dxdy
=∫dx∫f(x,y)dy
=∫dx∫x^2dy
由于x^2与y无关,故对y进行积分时可将x^2看成为常数,于是可以放到积分外边,即变为∫x^2dx∫dy
两种方法所算出的结果是相同的
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.