题目
设一个试验有三种可能结果0,1,2,其发生概率分别为P1=θ^2 ,P2=2θ(1-θ) ,P3=(1-θ)^2,现做了n次试验,观测到三种结果发生的次数分别是n1 ,n2 ,n3 ,求θ的矩估计和极大似然估计
提问时间:2021-03-24
答案
期望
=0*θ^2+1*2θ(1-θ)+2*(1-θ)^2=2-2θ
方差
=[(2-2θ-0)^2]*θ^2+[(2-2θ-1)^2]*2θ(1-θ)+[(2-2θ-2)^2]*(1-θ)^2
=2θ(1-θ)[4θ(1-θ)+4θθ-4θ+1]
=2θ(1-θ)
矩估计就是用具体的实验数据计算上面的东西
期望'=(0*n1+1*n2+2*n3)/(n1+n2+n3)
方差={n1*(期望'-0)^2+n2*(期望'-1)^2+n3*(期望'-2)^2}/(n1+n2+n3)
极大似然估计就是你观察到结果为0有n1次,1有n2次,2有n3次,那么θ是多少的时候你最有可能观察到这个数据呢?
用乘法原理就是
[θ^n1]*{[2θ(1-θ)]^n2}*[(1-θ)^n3]
θ是多少时上式最大
[θ^n1]*{[2θ(1-θ)]^n2}*[(1-θ)^n3]
=(2^n2) * [θ^(n1+n2)] * [(1-θ)^(n2+n3)]
(2^n2)忽略,配上系数,用均值不等式
[n1+n2-(n1+n2)*θ]^(n2+n3) * {[(n2+n3)θ]^(n1+n2)}
每项相等取等号
n1+n2-(n1+n2)*θ=[(n2+n3)θ]时候等号成立
(n1+n2+n2+m3)θ=(n1+n2)
=0*θ^2+1*2θ(1-θ)+2*(1-θ)^2=2-2θ
方差
=[(2-2θ-0)^2]*θ^2+[(2-2θ-1)^2]*2θ(1-θ)+[(2-2θ-2)^2]*(1-θ)^2
=2θ(1-θ)[4θ(1-θ)+4θθ-4θ+1]
=2θ(1-θ)
矩估计就是用具体的实验数据计算上面的东西
期望'=(0*n1+1*n2+2*n3)/(n1+n2+n3)
方差={n1*(期望'-0)^2+n2*(期望'-1)^2+n3*(期望'-2)^2}/(n1+n2+n3)
极大似然估计就是你观察到结果为0有n1次,1有n2次,2有n3次,那么θ是多少的时候你最有可能观察到这个数据呢?
用乘法原理就是
[θ^n1]*{[2θ(1-θ)]^n2}*[(1-θ)^n3]
θ是多少时上式最大
[θ^n1]*{[2θ(1-θ)]^n2}*[(1-θ)^n3]
=(2^n2) * [θ^(n1+n2)] * [(1-θ)^(n2+n3)]
(2^n2)忽略,配上系数,用均值不等式
[n1+n2-(n1+n2)*θ]^(n2+n3) * {[(n2+n3)θ]^(n1+n2)}
每项相等取等号
n1+n2-(n1+n2)*θ=[(n2+n3)θ]时候等号成立
(n1+n2+n2+m3)θ=(n1+n2)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1中译英 会的进来帮帮忙 好的追分!
- 2在一倒置于水槽且装满水的容器中,依次通过一定体积的二氧化氮、一氧化氮和氧气,充分反应后,若容器中仍充满水,则通入的二氧化氮、一氧化氮和氧气的体积比可能是
- 3CH2O的中心原子上的孤电子对数应如何计算
- 4求翻译:but will be available when the size
- 5The twins are good at playing soccer改为同义句怎么改The twins ( )( )playing soccer
- 6What has twohands and a face,but no arms and legs?
- 7海伦假如给我三天光明她每天都看到了什么?
- 8The student want to see(an action movie).(提问)
- 9三个语文题.(五十分)
- 10初一地理东经西经北纬南纬用字母怎么表示