题目
已知数列 a (n) = [(2 * 3^n ) + 2] / (3^n - 1)
1.求数列a (n)的最大项
2.设b (n) =[a (n) + p] / [a (n)-2],试确定实常数p,使得{b (n)}为等比数列
3.设m、n、p 属于正整数,m
1.求数列a (n)的最大项
2.设b (n) =[a (n) + p] / [a (n)-2],试确定实常数p,使得{b (n)}为等比数列
3.设m、n、p 属于正整数,m
提问时间:2021-03-23
答案
(1)
an=2×(3^n-1+2)/(3^n-1)=2+4/(3^n-1)
显然an单调递减,故(an)max=a1=4
(2)
an+p=[(2+p)×3^n+(2-p)]/(3^n-1)
an-2==4/(3^n-1)
bn=(An+p)/(An-2)=[(2+p)×3^n+(2-p)]/4
则p=2或-2时bn为等比数列
(3)假设存在这样的m,n,p(m<n<p)满足题意.
则1/(3^m-1)+1/(3^p-1)=2/(3^n-1)
通分化简:
即3^(n+p)+3^(n+m)+3^m+3^p=2(3^n+3^(m+p))
即3^(n+p-m)+3^n+3^(p-m)+1=2(3^(n-m)+3^p)
即3^(n+p-m-1)+3^(n-1)+3^(p-m-1)-2*3^(n-m-1)-2*3^(p-1)=-1/3 .(*)
因为m,n,p属于正整数,且m<n<p,
故n+p-m-1、n-1、p-m-1、n-m-1、p-1均为大于等于0的整数,
也即 (*)式左边为整数,而右边=-1/3不为整数.
所以(*)式不成立,与假设矛盾.
所以不存在三项am,an,ap,使得数列am,an,ap是等差数列.
an=2×(3^n-1+2)/(3^n-1)=2+4/(3^n-1)
显然an单调递减,故(an)max=a1=4
(2)
an+p=[(2+p)×3^n+(2-p)]/(3^n-1)
an-2==4/(3^n-1)
bn=(An+p)/(An-2)=[(2+p)×3^n+(2-p)]/4
则p=2或-2时bn为等比数列
(3)假设存在这样的m,n,p(m<n<p)满足题意.
则1/(3^m-1)+1/(3^p-1)=2/(3^n-1)
通分化简:
即3^(n+p)+3^(n+m)+3^m+3^p=2(3^n+3^(m+p))
即3^(n+p-m)+3^n+3^(p-m)+1=2(3^(n-m)+3^p)
即3^(n+p-m-1)+3^(n-1)+3^(p-m-1)-2*3^(n-m-1)-2*3^(p-1)=-1/3 .(*)
因为m,n,p属于正整数,且m<n<p,
故n+p-m-1、n-1、p-m-1、n-m-1、p-1均为大于等于0的整数,
也即 (*)式左边为整数,而右边=-1/3不为整数.
所以(*)式不成立,与假设矛盾.
所以不存在三项am,an,ap,使得数列am,an,ap是等差数列.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
- 1( ) 1._____ are going to England for a holiday.
- 2以石墨为两电极,电解CuCl2溶液,电解反应方程式为CuCl2==电解==Cu + Cl2我想问铜离子为什么要和氯离子
- 3超难的二倍角三角函数题.
- 4将一个直径8dm的圆形纸片沿直径对折后,得到一个半圆,这个半圆的面积?
- 51.73×99+1.73的简便运算
- 6我有个12v的led开关,请问我用开关电源给led供电12v,用不用加电阻,加的话,该加多大的电阻?
- 79只兔子装入几个笼子,要保证每个笼子中都有,且要保证最多有一个笼子中的兔子数不少于3只,则笼子数最少是_个,最多是_个.
- 8请用排比句式写一组描写时光来去匆匆.
- 9拉丁美洲的主要人种是( ) A.黑种人 B.白种人 C.黄种人 D.混血种人
- 10关于氨基酸的计算公式,谁知道?
热门考点