当前位置: > 证明:n边形的内角中锐角的个数不能超过3个...
题目
证明:n边形的内角中锐角的个数不能超过3个
如题,要详细一点的

提问时间:2021-03-23

答案
锐角的个数超过3个,则至少有4个.
假设有四个时,该多边形外补角>360度,
与定理:n边形的内角的外补角恒等于360度矛盾.
所以不成立,即n边形的内角中锐角的个数不能超过3个
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.