当前位置: > 求x→∞时,√[x+√(x+√x)]、√(1+x)-√(1-x)分别是x的几阶无穷小...
题目
求x→∞时,√[x+√(x+√x)]、√(1+x)-√(1-x)分别是x的几阶无穷小

提问时间:2021-03-23

答案
无穷小就是以数零为极限的变量,所以这里显然只有当x→0时,后面的两个式子才真正趋向于0,以下网址是对高阶无穷小的定义
第一题的x在根号下显然为非负数,直接除以其中x最小的次数x的1/8次方,就可以得到极限为1,所以是x的1/8阶无穷小;
第二题同时乘以和除以)√(1+x)+√(1-x),分子变成2x,分母在x→0的情况下为2,所以式子就变成了x,为x的一阶无穷小,也是等价无穷小.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.