题目
已知数列AN的前N项和为SN ,且A1=A,S(N+1)=2SN+N+1,求AN的通项公式.若A=1,BN=N/A(N+1)-AN,BN的前
N项和为TN,已知M>TN,求M的最小值.
N项和为TN,已知M>TN,求M的最小值.
提问时间:2021-03-23
答案
1.S(n+1)=2Sn+n+1(1)
Sn=2S(n-1)+(n-1)+1=2S(n-1)+n(2)
(1)-(2)得:a(n+1)=S(n+1)-Sn=2an+1
左右两边同时加上1,a(n+1)+1=2(an+1)
新的数列{an+1}是以a1+1=a+1为首项,2为公比的等比数列
an+1=(a+1)*2^(n-1)
an=(a+1)*2^(n-1)-1
2,若a=1,an=(a+1)*2^(n-1)-1=2^n-1
bn=n/[a(n+1)-an]=n/2^n,
故Tn=1/2+2/(2^2)+3/(2^3)+``````+n/(2^n)············①
1/2Tn=1/(2^2)+2/(2^3)+``````+n/[2^(n+1)]············②,
①-②得:1/2Tn=1/2+1/(2^2)+1/(2^3)+``````+1/(2^n)-n/[2^(n+1)]·
=[1-(1/2)^n]-n/[2^(n+1)]
Tn=2-(1/2)^(n-1)-n/2^n
Sn=2S(n-1)+(n-1)+1=2S(n-1)+n(2)
(1)-(2)得:a(n+1)=S(n+1)-Sn=2an+1
左右两边同时加上1,a(n+1)+1=2(an+1)
新的数列{an+1}是以a1+1=a+1为首项,2为公比的等比数列
an+1=(a+1)*2^(n-1)
an=(a+1)*2^(n-1)-1
2,若a=1,an=(a+1)*2^(n-1)-1=2^n-1
bn=n/[a(n+1)-an]=n/2^n,
故Tn=1/2+2/(2^2)+3/(2^3)+``````+n/(2^n)············①
1/2Tn=1/(2^2)+2/(2^3)+``````+n/[2^(n+1)]············②,
①-②得:1/2Tn=1/2+1/(2^2)+1/(2^3)+``````+1/(2^n)-n/[2^(n+1)]·
=[1-(1/2)^n]-n/[2^(n+1)]
Tn=2-(1/2)^(n-1)-n/2^n
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1英语翻译
- 2工程队修一条公路,第一周修了全长的3分之一,第二周修了360米,这时已修的是未修的3倍,这条路多长?方程的请走开
- 3北半球的锋面气旋为什么向东移动
- 4English is widely____(speak)all over the world
- 5一道类比推理的难题,
- 6物体质量 为10千克,与水平地间动摩擦因素为0.2,用水平力F拉它静止起以2m/s平方加速度运动6秒,分别求:拉力F做的功,摩擦力做的功,合外力做的功.
- 7、《草船借箭》这篇课文以借为线索,先写了借箭的起因:_______再写了借箭的经过:___最后写借箭的结果
- 8良药苦口 忠言逆耳 那良药就一定苦口吗 忠言一定逆耳吗 又者苦口的一定是良药吗 逆耳的一定是忠言吗如题
- 9高分子化合物的界在哪?相对分子质量多少才算?多少以下就不是了?
- 10忆江南 表达了诗人什么样的思想感情
热门考点