题目
如图,等腰梯形ABCD中,AD∥BC,点E是AD延长线上一点,DE=BC.
(1)求证:∠E=∠DBC;
(2)判断△ACE的形状(不需要说明理由).
(1)求证:∠E=∠DBC;
(2)判断△ACE的形状(不需要说明理由).
提问时间:2021-03-22
答案
(1)证明:
证法一:∵AD∥BC,
∴∠BCD=∠EDC,
在△BCD和△EDC中,
,
∴△BCD≌△EDC(SAS)
∴∠E=∠DBC
证法二:∵DE∥BC,DE=BC,
∴四边形BCED是平行四边形,(一组对边平行且相等的四边形是平行四边形)
∴∠E=∠DBC.
(2)△ACE是等腰三角形.
理由为:∵梯形ABCD为等腰梯形,
∴AB=DC,AC=BD,
又∵BC=CB,
∴△ABC≌△DCB,
∴∠ACB=∠DBC,
∵AE∥BC,
∴∠EAC=∠ACB,
∴∠DBC=∠EAC,
又∵∠DBC=∠E,
∴∠EAC=∠E,
∴AC=EC,
∴△ACE是等腰三角形.
证法一:∵AD∥BC,
∴∠BCD=∠EDC,
在△BCD和△EDC中,
|
∴△BCD≌△EDC(SAS)
∴∠E=∠DBC
证法二:∵DE∥BC,DE=BC,
∴四边形BCED是平行四边形,(一组对边平行且相等的四边形是平行四边形)
∴∠E=∠DBC.
(2)△ACE是等腰三角形.
理由为:∵梯形ABCD为等腰梯形,
∴AB=DC,AC=BD,
又∵BC=CB,
∴△ABC≌△DCB,
∴∠ACB=∠DBC,
∵AE∥BC,
∴∠EAC=∠ACB,
∴∠DBC=∠EAC,
又∵∠DBC=∠E,
∴∠EAC=∠E,
∴AC=EC,
∴△ACE是等腰三角形.
(1)根据AD∥BC,得到∠BCD=∠CDE,又DE=BC,所以△BCD≌△EDC,根据全等三角形的对应角相等即可得证.
(2)根据全等三角形对应边相等得到BD=CE,又等腰梯形的对角线相等,所以AC=CE,所以是等腰三角形.
(2)根据全等三角形对应边相等得到BD=CE,又等腰梯形的对角线相等,所以AC=CE,所以是等腰三角形.
等腰梯形的性质;全等三角形的判定与性质;等腰三角形的判定.
本题主要利用等腰梯形的性质和全等三角形的判定,利用全等三角形的对应角相等是证明两个角相等常用的方法之一,本题利用平行四边形的判定和性质证明更加简单.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1死神嘉年华2的地图上有个S的标志是什么意思
- 2数学的数字填表格
- 3劳务报酬所得是3000元,5000元,18000元,36000元,62000元应该缴纳多少个人所得税?
- 4把若干个体积相等的正方体拼成一个大正方体,然后在其表面涂上红色,已知一面涂色的小正方体有96个,那么两面涂色的小正方体有_个.
- 5学校食堂买来一批大米,每天吃96千克,可以吃5天.如果每天吃80千克,可以吃几天?解方程,2种方法
- 6生物圈与生态系统的区别
- 7显微镜的目镜为10*、物镜为10*,视野看到16个完整的细胞,目镜不变,物镜换成40*时,视野看到1个完整的细
- 8那位老师教教我高中物理中的三角函数.
- 9一道数学题(用方程解)!麻烦一下!快快!
- 10用分子的观点分析:冰水混合物与糖水混合物,有何不同?
热门考点