当前位置: > 求经过点P(6,-4)且被定圆x+y=20截得弦长为6√2的直线AB的方程...
题目
求经过点P(6,-4)且被定圆x+y=20截得弦长为6√2的直线AB的方程

提问时间:2021-03-22

答案
卢旭霞:圆O:X^2+Y^2=20,圆心在原点,半径的平方R^2=20
截得弦长为6√2,则弦长之半为3√2
圆心(即原点)到弦AB的距离d = √{R^2-(3√2)^2} = √(20-18)=√2
令AB所在直线斜率k
过点P(6,-4)
∴y=k(x-6)-4 ,kx-y-6k-4 = 0
原点(即圆心)到kx-y-6k-4 = 0的距离为√2
|-6k-4| / √(k^2+1) = √2
(6k-4)^2=2(k^2+1)
36k^2-48k+16 = 2k^2+2
17k^2-24k+7 = 0
(17k-7)(k-1) = 0
k=7/17,或k=1
7/17x-y-6*7/17-4 = 0,即7x-17y-110=0
或者:
x-y-10=0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.