当前位置: > 高数:∫(0→1)xarctanx/(1+x^2)^3 dx...
题目
高数:∫(0→1)xarctanx/(1+x^2)^3 dx

提问时间:2021-03-22

答案
令x = tanz,dx = sec²z dz
∫(0→1) xarctanx/(1 + x²)³ dx
= ∫(0→π/4) ztanz/sec⁶z * (sec²z dz)
= ∫(0→π/4) zsinzcos³z dz
= ∫(0→π/4) zcos³z d(- cosz)
= (- 1/4)∫(0→π/4) z d(cos⁴z)
= (- 1/4)zcos⁴z |(0→π/4) + (1/4)∫(0→π/4) cos⁴z dz
= - π/64 + (1/4)∫(0→π/4) [(1 + cos2z)/2]² dz
= - π/64 + (1/4)²∫(0→π/4) [1 + 2cos2z + (1 + cos4z)/2] dz
= - π/64 + (1/16)[z + sin2z + z/2 + (1/8)sin4z] |(0→π/4)
= - π/64 + (1/128)(8 + 3π)
= (8 + π)/128
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.