当前位置: > 请问高数题 设f(x)在(-∞,+∞)内连续,F(x)=∫(上限x,下限0) (2t-x)f(t)dt.求证:有相同单调性!...
题目
请问高数题 设f(x)在(-∞,+∞)内连续,F(x)=∫(上限x,下限0) (2t-x)f(t)dt.求证:有相同单调性!
我看到你回答的类似的试问这道题奇偶的 所以来问问你!

提问时间:2021-03-22

答案
F(x)=∫(上限x,下限0) (2t-x)f(t)dt = ∫(上限x,下限0) 2t f(t) dt - x * ∫(上限x,下限0) f(t) dt
F ' (x) = 2x f(x) - ∫(上限x,下限0) f(t) dt - x f(x) = x f(x) - ∫(上限x,下限0) f(t) dt
= x f(x) - x * f(ξ) = x * ( f(x) - f(ξ) ),ξ 介于 0 和 x之间.定积分中值定理
当 f(x) 单增时,x 0
x>0,0< ξ < x ,f(ξ) < f(x) ,x * ( f(x) - f(ξ) ) > 0
总有 F ' (x) > 0 => F(x)单增;
当 f(x) 单减时,F ' (x) < 0 => F(x)单减.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.