当前位置: > 已知数列bn的首项b1=3/5,b(n+1)=3bn/(2(bn)+1)...
题目
已知数列bn的首项b1=3/5,b(n+1)=3bn/(2(bn)+1)
(1)求证数列{(1/bn)-1}为等比数列 (2)求数列{1/bn}的前n项和Sn

提问时间:2021-03-21

答案
1
∵b(n+1)=3bn/(2(bn)+1)
∴1/b(n+1)=(2bn+1)/(3bn)=2/3+1/(3bn)
∴[1/b(n+1)-1]/(1/bn-1)
=[2/3+1/(3bn)-1]/(1/bn-1)
=1/3*(1/bn-1)/(1/bn-1)
=1/3
∴数列{1/bn-1}为等比数列
公比为1/3
2
由1知:1/bn-1=(1/b1-1)*(1/3)^(n-1)=2/3^n
∴1/bn=1+2/3^n
∴{1/bn}的前n项和 (分组:前面是常数,后面等比)
Sn=n+2/3(1-1/3^n)/(1-1/3)=n+1-1/3^n
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.