当前位置: > 当a=__时,两曲线y=ax^2,y=lnx相切,切线方程是?...
题目
当a=__时,两曲线y=ax^2,y=lnx相切,切线方程是?

提问时间:2021-03-21

答案
y=ax^2,y'=2ax
y=lnx,y'=1/x
2ax=1/x
x=√(1/2a)分别代入y=ax^2与y=lnx,则
ln√(1/2a)=1/2
a=1/2e
切点为(√e,1/2)
y-1/2=(x-√e)/√e
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.