题目
甲,乙两个射击手互不影响地在同一地方进行射击比赛,射击一次,甲乙命中目标的概率分别为3/4与p,且乙射击两次均没有击中目标的概率为1/25.
(1)求乙射击一次击中目标的概率p
(2)若甲射击2次,乙射击1次,两人共击中目标的次数记为s,求s的分布列与数学期望.
(1)求乙射击一次击中目标的概率p
(2)若甲射击2次,乙射击1次,两人共击中目标的次数记为s,求s的分布列与数学期望.
提问时间:2021-03-21
答案
----------------------------------------------------------(1)乙射击一次击中目标的概率p
(1-p)^2=1/25
p=1-√(1/25)=1-1/5=4/5
----------------------------------------------------------(2)s的分布列与数学期望.
P(s=0)=(1-3/4)^2*(1-p)=1/16*1/5=1/80
P(s=1)=C(2,1)*(1-3/4)*(3/4)*(1-p)+(1-3/4)^2*p=6/80+4/80=10/80=1/8
P(s=2)=C(2,1)*(1-3/4)*(3/4)*p+(3/4)^2*(1-p)=24/80+9/80=33/80
P(s=3)=(3/4)^2*p=9/16*4/5=36/80=9/20
分布列
s 0 1 2 3
P 1/80 1/8 33/80 9/20
期望
E=0*1/80+1*1/8+2*33/80+3*9/20=184/80=2.3
(1-p)^2=1/25
p=1-√(1/25)=1-1/5=4/5
----------------------------------------------------------(2)s的分布列与数学期望.
P(s=0)=(1-3/4)^2*(1-p)=1/16*1/5=1/80
P(s=1)=C(2,1)*(1-3/4)*(3/4)*(1-p)+(1-3/4)^2*p=6/80+4/80=10/80=1/8
P(s=2)=C(2,1)*(1-3/4)*(3/4)*p+(3/4)^2*(1-p)=24/80+9/80=33/80
P(s=3)=(3/4)^2*p=9/16*4/5=36/80=9/20
分布列
s 0 1 2 3
P 1/80 1/8 33/80 9/20
期望
E=0*1/80+1*1/8+2*33/80+3*9/20=184/80=2.3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1The guide ought to explain to us why the coach is late 改为一般疑问句并做肯定回答
- 2两辆汽车同时从甲乙两地相向而行,一辆小汽车60千米/时,一辆卡车48千米/时,相遇时 小汽车比卡车多行30千
- 3甲乙两班共有84人,甲的5/8与乙班的3/4共58人,两班共有几人
- 4若a-根号2的绝对值等于根号2-a,则a的取值范围是
- 5有哪些英语单词既有adj的意思又有adv形式的意思
- 6因式分解x^3-7x^2+15x-9
- 7七年级英语(填空)
- 8a>2,b>2的充要条件是什么
- 9Nothing is impossible to a willing
- 10因式分解(m^2+3m)^4-8(m^2+3m)^2+16
热门考点