当前位置: > 应用stolz定理的证明题:f(x)连续,f(x+1)-f(x)的极限为A,求f(x)/x的极限为A....
题目
应用stolz定理的证明题:f(x)连续,f(x+1)-f(x)的极限为A,求f(x)/x的极限为A.

提问时间:2021-03-21

答案
f(x)/x的极限等于f(n)/n的极限(根据归结原则,即海涅定理),再由stolz定理,得f(n)/n的极限等于【f(n)-f(n-1)】/【n-(n-1)】的极限,即f(n)-f(n-1)的极限等于f(x+1)-f(x)的极限,为A
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.