当前位置: > 设A为n阶矩阵,且满足A^2=A ,则下列命题中正确的是( ) 为什么...
题目
设A为n阶矩阵,且满足A^2=A ,则下列命题中正确的是( ) 为什么
A.A=O
B.A=I
C.若A不可逆,则A=O
D.若A可逆,则A=I

提问时间:2021-03-20

答案
D,很显然A=I和O时等式都满足,所以A,B都不对,至于C显然矩阵
1 0
0 0 满足,但是它不是O
D只要在等式两侧同时乘以A得逆矩阵就可以得到
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.