题目
已知函数f(x)=x2+bx+c,且函数f(x+1)是偶函数.
(Ⅰ)求实数b的值;
(Ⅱ)若函数g(x)=|f(x)|(x∈[-1,2])的最小值为1,求函数g(x)的最大值.
(Ⅰ)求实数b的值;
(Ⅱ)若函数g(x)=|f(x)|(x∈[-1,2])的最小值为1,求函数g(x)的最大值.
提问时间:2021-03-20
答案
(I)∵f(x+1)为偶函数
∴f(-x+1)=f(x+1)对任意x都成立
∵f(x)=x2+bx++c
∴(1-x)2+b(1-x)+c=(1+x)2+b(1+x)+c
整理可得(b+2)x=0对任意x都成立
∴b=-2
(II)由(I)可得g(x)=|x2-2x+c|=|(x-1)2+c-1|,x∈[-1,2]
①当f(1)=c-1>0即c>1时,y=(x-1)2+c-1>0,则g(x)=x2-2x+c=(x-1)2+c-1>0,x∈[-1,2]
则g(x)=(x-1)2+c-1的最小值f(1)=c-1=1
∴c=2,此时g(x)=(x-1)2+1在[-1,1]上单调递减,在[1,2]上单调递增,则g(x)的最大值g(-1)=5
②若f(1)≤0,f(-1)≥0,即-3≤c≤1时,函数f(x)在[-1,2]上至少有一零点,此时g(x)=|f(x)|的最小值0,不合题意
故当c>1时,函数g(x)有最大值g(-1)=5
∴f(-x+1)=f(x+1)对任意x都成立
∵f(x)=x2+bx++c
∴(1-x)2+b(1-x)+c=(1+x)2+b(1+x)+c
整理可得(b+2)x=0对任意x都成立
∴b=-2
(II)由(I)可得g(x)=|x2-2x+c|=|(x-1)2+c-1|,x∈[-1,2]
①当f(1)=c-1>0即c>1时,y=(x-1)2+c-1>0,则g(x)=x2-2x+c=(x-1)2+c-1>0,x∈[-1,2]
则g(x)=(x-1)2+c-1的最小值f(1)=c-1=1
∴c=2,此时g(x)=(x-1)2+1在[-1,1]上单调递减,在[1,2]上单调递增,则g(x)的最大值g(-1)=5
②若f(1)≤0,f(-1)≥0,即-3≤c≤1时,函数f(x)在[-1,2]上至少有一零点,此时g(x)=|f(x)|的最小值0,不合题意
故当c>1时,函数g(x)有最大值g(-1)=5
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1在等差数列{an}中,已知d=3,an=20,sn=65,求n.
- 210-(a-b)的平方是有最大值,还是有最小值?这个值是多少?这时的a与b的关系如何?
- 3写一篇英语作文介绍你去过的地方,以及感受.
- 4今大道既隐,天下为家,各亲其亲,各子其子,货力为己.
- 5已知函数f(x)=-2x2+3tx+t(x,t∈R)的最大值是u(t),当u(t)有最小值时,t的取值为( ) A.94 B.−94 C.49 D.−49
- 6一字开头的非四字成语
- 7下列不属于电磁波的是
- 8用括号内所给词的适当形填空.
- 975、70、77、65、85、82、68、78的方差 70 81 72 84 74 60 65 94的方差
- 10英语翻译
热门考点
- 1Broke down again是什么意思
- 2怎样消除硫氧化物和氮氧化物?
- 3如果力是 两力的合力,用矢量方程表示为 其大小之间的关系为( )
- 4猴子最喜欢爬树而且要爬最高的树?
- 5S与S1成正比例,S1与a成反比例,则S与a成( )
- 6( )重量,( )大象.填空:用称还是用秤
- 7It is re ported that the United States uses _____ energy as the whole of Europe.
- 8已知:a,b,c,d满足a+b=c+d,a3+b3=c3+d3.求证:a2009+b2009=c2009+d2009.
- 9take into
- 10一些数学题,伤脑筋讷,