题目
2000年第26届俄罗斯数学奥林匹克十年级决赛试题
在矩形桌子上放着许多相等而不重合的正方体纸片,其边都平行桌子的边且被分别染成k(k>=2)种颜色之一.如果考虑任意k个颜色互不相同的正方形,那么它们中都有两个可用一枚钉子钉在桌上.证明:可用(2k-2)枚钉子把某一种颜色的所有正方形全部钉在桌上.
很难的题,很想弄懂,给个100分,
三易巾凡,实在抱歉,你的答案我看得不太懂,能写具体些吗?
在矩形桌子上放着许多相等而不重合的正方体纸片,其边都平行桌子的边且被分别染成k(k>=2)种颜色之一.如果考虑任意k个颜色互不相同的正方形,那么它们中都有两个可用一枚钉子钉在桌上.证明:可用(2k-2)枚钉子把某一种颜色的所有正方形全部钉在桌上.
很难的题,很想弄懂,给个100分,
三易巾凡,实在抱歉,你的答案我看得不太懂,能写具体些吗?
提问时间:2021-03-20
答案
对颜色数k作归纳.假设k种颜色编号为C[1],C[2],...,C[k]:
1.k = 2,找出桌面上最左端的正方形s,假设它的颜色为C[1],则所有颜色为C[2]的正方形均与之相交,并且这些正方形至少包含s右边的两个顶点之一,从而可以用2个钉子钉住颜色为C[2]的所有正方形.
2.设k = n时命题成立,k = n+1时,同样找出桌面上最左端的正方形s,假设它的颜色为C[n+1],将除s外的所有颜色为C[n+1]的正方形除去,则剩下的k色正方形可以分成两类,一类和s相交(这些正方形至少包含s右边的两个顶点之一),另一类满足:任k个颜色互不相同的正方形,存在两个正方形相交(否则这k个正方形和s组成的k+1个异色正方形两两不相交,矛盾).第一类可用两个钉子钉住,第二类根据归纳假设可用2k-2个钉子钉住其中的某一色正方形,该色正方形即被2k-2+2 = 2(k+1)-2个钉子完全钉住.
1.k = 2,找出桌面上最左端的正方形s,假设它的颜色为C[1],则所有颜色为C[2]的正方形均与之相交,并且这些正方形至少包含s右边的两个顶点之一,从而可以用2个钉子钉住颜色为C[2]的所有正方形.
2.设k = n时命题成立,k = n+1时,同样找出桌面上最左端的正方形s,假设它的颜色为C[n+1],将除s外的所有颜色为C[n+1]的正方形除去,则剩下的k色正方形可以分成两类,一类和s相交(这些正方形至少包含s右边的两个顶点之一),另一类满足:任k个颜色互不相同的正方形,存在两个正方形相交(否则这k个正方形和s组成的k+1个异色正方形两两不相交,矛盾).第一类可用两个钉子钉住,第二类根据归纳假设可用2k-2个钉子钉住其中的某一色正方形,该色正方形即被2k-2+2 = 2(k+1)-2个钉子完全钉住.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
- 1x=sina y=cos2a 将参数华为普通方程,
- 2求表达内心苦闷的诗句~
- 3twelve英文怎么读
- 4吕蒙入吴………的注释
- 5硝酸银的电离方程式?
- 6两个额定电压相同的电炉A和B,它们的额定功率PA>PB,它们的电热丝是用同种材料做成的,则两者比较正确的是( )
- 7王阿姨买水果一共了42点2元,买的苹果有8千克,苹果单价3点25元,香蕉单价4点50元,买香蕉多少千克?
- 8There are many other bays that you could explore whilst on the island as well as .
- 9Mr.James Scott has a garage in Silbury and now he has just bought another garage in Pinhurst.
- 10batch什么意思
热门考点
- 1若 tan(180度-a)>0, cosa>0, 则角a在第几象限
- 2等待黑暗 英文怎么写
- 3悲惨世界 优美句子50~100句用来摘抄
- 4汽车镜的后视镜用的是----镜,利用它的目的是----,太阳灶用的是
- 5上海市徐家汇气象站2012年4-6月,月平均气温是多少?
- 6Start a post abou t翻译!英语
- 7马克思主义是什么时候诞生的
- 8某队安装480米的水管,前4天装了120米,照这样计算,安装完这水管还要多少天?
- 9You only were lonely 是什么意思.
- 10某种车辆,购车费10万元,每年交保险费、养路费及汽油费合计9千元,汽车的维修费平均为:第一年2千元,第二年4千元,第三年6千元,依等差数列逐年递增,问使用多少年平均费用最少?