当前位置: > 求椭圆x^2+3y^2=12的内接等腰三角形,使其底边平行椭圆的长轴,而面积最大,求最大面积....
题目
求椭圆x^2+3y^2=12的内接等腰三角形,使其底边平行椭圆的长轴,而面积最大,求最大面积.

提问时间:2021-03-20

答案
根据对称性,等腰△ABC底边平行椭圆的长轴时,△顶点A与某个椭圆短轴顶点重合.
由对称性,不妨设A与上顶点重合,则A(0 ,2),设B左C右,并设C(2√3cosγ ,2sinγ),则BC中点D(0,2sinγ),∣CD∣ = 2√3cosγ,∣AD∣ = 2 - 2sinγ,且cosγ≠0
∴S = ∣CD∣·∣AD∣·2·(1/2) = 4√3·cosγ·(1-sinγ)《4√3·(1/2)·[(cosγ)^2 + (1-sinγ)^2]
当且仅当cosγ = (1-sinγ)取等号,带入同角关系式解得cosγ = 1 ,sinγ = 0
∴S(max) = 4√3
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.