题目
二项式定理有什么具体应用意义
提问时间:2021-03-20
答案
二项式定理在组合理论、开高次方、高阶等差数列求和,以及差分法中有广泛的应用
二项式定理与杨辉三角形是一对天然的数形趣遇,它把数形结合带进了计算数学.求二项式展开式系数的问题,实际上是一种组合数的计算问题.用系数通项公式来计算,称为“式算”;用杨辉三角形来计算,称作“图算”.
【图算】 常数项产生在展开后的第5、6两项.用“错位加法”很容易“加出”杨辉三角形第8行的第5个数.简图如下:
1 4 6 4 1
1 5 10 10 5 1
…… 15 20 15 6 …
1 …… 35 35 21 ……
… 70 56 …
图上得到=70,==56.
故求得展开式中常数项为70 – 2×56 = – 42
【点评】 “式算”与“图算”趣遇,各扬所长,各补所短.
杨辉三角形本来就是二项式展开式的算图.对杨辉三角形熟悉的考生,比如他熟悉到了它的第6行:
1,6,15,20,15,6,1
那么他可以心算不动笔,对本题做到一望而答.
杨辉三角形在3年内考了5个(相关的)题目,这正是高考改革强调“多想少算”、“逻辑思维与直觉思维并重”的结果.这5个考题都与二项式展开式的系数相关,说明数形结合思想正在高考命题中进行深层次地渗透.
利用二项式推出牛顿切线法开方
公式来源《数学传播》136期
开立方公式:
公式来源《数学传播》136期设A = X^3,求X.称为开立方.开立方有一个标准的公式:
X(n+1)=Xn+(A/X^2-Xn)1/3 (n,n+1是下角标)
例如,A=5,即求
5介于1的3次方;至2的3次方;之间(1的3次方=1,2的3次方=8)
初始值X0可以取1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,都可以.例如我们取X0 = 1.9按照公式:
第一步:X1=1.9+(5/1.9^2;-1.9)1/3=1.7.
即5/1.9×1.9=1.3850416,1.3850416-1.9=-0.5149584,-0.5149584×1/3=-0.1716528,1.9+(-0.1716528)=1.7.即取2位数值,即1.7.
第二步:X2=1.7+(5/1.7^2;-1.7)1/3=1.71.
即5/1.7×1.7=1.73010,1.73-1.7=0.03,0.03×1/3=0.01,1.7+0.01=1.71.取3位数,比前面多取一位数.
第三步:X3=1.71+(5/1.71^2;-1.71)1/3=1.709.
第四步:X4=1.709+(5/1.709^2;-1.709)1/3=1.7099
这种方法可以自动调节,第一步与第三步取值偏大,但是计算出来以后输出值会自动转小;第二步,第四步输入值
偏小,输出值自动转大.即5=1.7099^3;
当然初始值X0也可以取1.1,1.2,1.3,...1.8,1.9中的任何一个,都是X1 = 1.7 > .当然,我们在实际中初始值最好采用中间值,即1.5.1.5+(5/1.5²-1.5)1/3=1.7.
如果用这个公式开平方,只需将3改成2,2改成1.即
X(n + 1) = Xn + (A / Xn-Xn)1 / 2.
例如,A=5:
5介于2的平方至3的平方;之间.我们取初始值2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9都可以,我们最好取 中间值2.5.第一步:2.5+(5/2.5-2.5)1/2=2.2;
即5/2.5=2,2-2.5=-0.5,-0.5×1/2=-0.25,2.5+(-0.25)=2.25,取2位数2.2.
第二步:2.2+(5/2.2-2.2)1/2=2.23;
即5/2.2=2.272,2.272-2.2=-0.072,-0.072×1/2=-0.036,2.2+0.036=2.23.取3位数.
第三步:2.23+(5/2.23-2.23)1/2=2.236.
即5/2.23=2.242,2.242-2.23=0.012,0.012×1/2=0.006,2.23+0.006=2.236.
每一步多取一位数.这个方法又叫反馈开方,即使你输入一个错误的数值,也没有关系,输出值会自动调节,接近准确值.
A=(X±Y)^n=展开.带入公式就是开方公式.X(n+1)=Xn+(A/X^(k-1)-Xn)1/k=Xn-f(x)/f‘(x).
f'(x)=kx^(K-1);f(X)=X^K-A. 即牛顿切线法
就是在开方过程中把牛顿二项式定理转换成为牛顿切线法.
二项式定理与杨辉三角形是一对天然的数形趣遇,它把数形结合带进了计算数学.求二项式展开式系数的问题,实际上是一种组合数的计算问题.用系数通项公式来计算,称为“式算”;用杨辉三角形来计算,称作“图算”.
【图算】 常数项产生在展开后的第5、6两项.用“错位加法”很容易“加出”杨辉三角形第8行的第5个数.简图如下:
1 4 6 4 1
1 5 10 10 5 1
…… 15 20 15 6 …
1 …… 35 35 21 ……
… 70 56 …
图上得到=70,==56.
故求得展开式中常数项为70 – 2×56 = – 42
【点评】 “式算”与“图算”趣遇,各扬所长,各补所短.
杨辉三角形本来就是二项式展开式的算图.对杨辉三角形熟悉的考生,比如他熟悉到了它的第6行:
1,6,15,20,15,6,1
那么他可以心算不动笔,对本题做到一望而答.
杨辉三角形在3年内考了5个(相关的)题目,这正是高考改革强调“多想少算”、“逻辑思维与直觉思维并重”的结果.这5个考题都与二项式展开式的系数相关,说明数形结合思想正在高考命题中进行深层次地渗透.
利用二项式推出牛顿切线法开方
公式来源《数学传播》136期
开立方公式:
公式来源《数学传播》136期设A = X^3,求X.称为开立方.开立方有一个标准的公式:
X(n+1)=Xn+(A/X^2-Xn)1/3 (n,n+1是下角标)
例如,A=5,即求
5介于1的3次方;至2的3次方;之间(1的3次方=1,2的3次方=8)
初始值X0可以取1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,都可以.例如我们取X0 = 1.9按照公式:
第一步:X1=1.9+(5/1.9^2;-1.9)1/3=1.7.
即5/1.9×1.9=1.3850416,1.3850416-1.9=-0.5149584,-0.5149584×1/3=-0.1716528,1.9+(-0.1716528)=1.7.即取2位数值,即1.7.
第二步:X2=1.7+(5/1.7^2;-1.7)1/3=1.71.
即5/1.7×1.7=1.73010,1.73-1.7=0.03,0.03×1/3=0.01,1.7+0.01=1.71.取3位数,比前面多取一位数.
第三步:X3=1.71+(5/1.71^2;-1.71)1/3=1.709.
第四步:X4=1.709+(5/1.709^2;-1.709)1/3=1.7099
这种方法可以自动调节,第一步与第三步取值偏大,但是计算出来以后输出值会自动转小;第二步,第四步输入值
偏小,输出值自动转大.即5=1.7099^3;
当然初始值X0也可以取1.1,1.2,1.3,...1.8,1.9中的任何一个,都是X1 = 1.7 > .当然,我们在实际中初始值最好采用中间值,即1.5.1.5+(5/1.5²-1.5)1/3=1.7.
如果用这个公式开平方,只需将3改成2,2改成1.即
X(n + 1) = Xn + (A / Xn-Xn)1 / 2.
例如,A=5:
5介于2的平方至3的平方;之间.我们取初始值2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9都可以,我们最好取 中间值2.5.第一步:2.5+(5/2.5-2.5)1/2=2.2;
即5/2.5=2,2-2.5=-0.5,-0.5×1/2=-0.25,2.5+(-0.25)=2.25,取2位数2.2.
第二步:2.2+(5/2.2-2.2)1/2=2.23;
即5/2.2=2.272,2.272-2.2=-0.072,-0.072×1/2=-0.036,2.2+0.036=2.23.取3位数.
第三步:2.23+(5/2.23-2.23)1/2=2.236.
即5/2.23=2.242,2.242-2.23=0.012,0.012×1/2=0.006,2.23+0.006=2.236.
每一步多取一位数.这个方法又叫反馈开方,即使你输入一个错误的数值,也没有关系,输出值会自动调节,接近准确值.
A=(X±Y)^n=展开.带入公式就是开方公式.X(n+1)=Xn+(A/X^(k-1)-Xn)1/k=Xn-f(x)/f‘(x).
f'(x)=kx^(K-1);f(X)=X^K-A. 即牛顿切线法
就是在开方过程中把牛顿二项式定理转换成为牛顿切线法.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1Wei Hua is in Row Three 用Row Three 提问
- 2分析美国内战中北方取得胜利的原因
- 3已知二元一次方程4x-2y=-1,用含x的代数式表示y,则y
- 4求:王勃《滕王阁序》
- 5设{an}是以2为首项,1为公差的等差数列,{bn}是以1为首项,2为公比的等比数列,记Mn=ab1+ab2+…+abn,则{Mn}中不超过2009的项的个数为( ) A.8 B.9 C.10 D.
- 6读书笔记鲁宾逊漂流记的好词好句
- 7请问:用“鼠、鸡、狗、鹤、马、龙、虎、蛇”这几个字组成成语怎么组啊?
- 8人骑自行车绕800米长的环形跑道行驶,他们从同一地点出发,如果方向相反,每1分20秒相遇一次.如果方向相同,每13分20秒相遇一次.求各人的速度.
- 9写一篇感恩他人的日记.300~400字
- 10河两岸有两个村庄,要在河面架一座垂直于河岸的桥,怎样建造,两村之间距离最短.(请画图说明)
热门考点