当前位置: > 设A为n阶实矩阵,A^T为A转置矩阵,证明:R(A)=R(A^TA)...
题目
设A为n阶实矩阵,A^T为A转置矩阵,证明:R(A)=R(A^TA)
回答即使再给100分

提问时间:2021-03-20

答案
我们利用这个性质:若A、 B 均为n阶矩阵,那么必有
r(AB)≤min{r(A),r(B)}的推广定理,这在北大版高代中提到过.
则 r(A)= r(AE)= r(A*A^T*A)≤r(A^T*A)≤r(A)
(这一步就是利用上面定理的不等式来放缩,用到这样一个数学思想:要证明a=b,只要证明a≥b和a≤b即可)
也就是我们得到了r(A)≤r(A^T*A)≤r(A),由三秩相等定理可得:
r(A)= r(A^T*A).证毕.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.