当前位置: > 求教一道高数题 求曲面z=x^2+y^2+3在点M(1,-1,5)处的切平面与曲面z=x^2+y^2+2x-2y所围成的空间区域的体积...
题目
求教一道高数题 求曲面z=x^2+y^2+3在点M(1,-1,5)处的切平面与曲面z=x^2+y^2+2x-2y所围成的空间区域的体积

提问时间:2021-03-19

答案
曲面z=x^2+y^2+3在点M处的法向量
n=(2x,2y,-1)|M=(2,-2,-1)
写出切平面的方程
2(x-1)-2(y+1)-(z-5)=0
整理为
2x-2y-z+1=0
可以写成z=2x-2y+1
把平面和曲面z=x^2+y^2+2x-2y联立得到投影:x^2+y^2=1
所以体积
V=∫∫∫dxdydz=∫∫dxdy ∫(x^2+y^2+2x-2y-> 2x-2y+1)dz
=∫∫(1-x^2-y^2)dxdy
=∫∫(1-r^2)rdrdθ
=∫(0->2π)dθ ∫(0->1) (1-r^2)rdr
=π/2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.