当前位置: > 4 ≤ x^2+y^2≤9,求 x^2-xy+y^2 的最大值和最小值...
题目
4 ≤ x^2+y^2≤9,求 x^2-xy+y^2 的最大值和最小值

提问时间:2021-03-19

答案
令x=rcost,y=rsint,所以4 ≤ x^2+y^2≤9得2≤r≤c
所求为:(rcost)^2-(rsint*rcost)+(rsint)^2=r^2(1-cost*sint)
=r^2(1-1/2sin2t)
1-1/2sin2t最大值为3/2,最小为1/2,r^2最大为9,最小为4,所以最大为27/2,最小为2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.