题目
高中曲线与方程
1.已知双曲线中心在原点,一个焦点为F(√7,0),直线y=x-1与其交于M、N两点,MN中点的横坐标为-2/3,则此双曲线方程是----------.
2.已知圆x²+y²=1,点A(1,0),△ABC内接于圆,∠BAC=60°,当BC在圆上运动时,BC中点的轨迹方程是----------.
3.已知A(4,0),B(2,2)是椭圆X²/25+Y²/9=1内的点,M是椭圆上的动点,则|MA|+|MB|的最大值-----------.
4.高5米和3米的旗杆在水平地面上,如果把两旗杆底部的坐标分别定为A(-5,0),B(5,0),则地面上杆顶仰角相等的点的轨迹是------.
1.已知双曲线中心在原点,一个焦点为F(√7,0),直线y=x-1与其交于M、N两点,MN中点的横坐标为-2/3,则此双曲线方程是----------.
2.已知圆x²+y²=1,点A(1,0),△ABC内接于圆,∠BAC=60°,当BC在圆上运动时,BC中点的轨迹方程是----------.
3.已知A(4,0),B(2,2)是椭圆X²/25+Y²/9=1内的点,M是椭圆上的动点,则|MA|+|MB|的最大值-----------.
4.高5米和3米的旗杆在水平地面上,如果把两旗杆底部的坐标分别定为A(-5,0),B(5,0),则地面上杆顶仰角相等的点的轨迹是------.
提问时间:2021-03-19
答案
高中曲线与方程问题
1.已知双曲线中心在原点,一个焦点为F(√7,0),直线y=x-1与其交于M、N两点,MN中点的横坐标为-2/3,则此双曲线方程是----------.
2.已知圆x2+y2=1,点A(1,0),△ABC内接于圆,∠BAC=60°,当BC在圆上运动时,BC中点的轨迹方程是----------.
3.已知A(4,0),B(2,2)是椭圆X2/25+Y2/9=1内的点,M是椭圆上的动点,则|MA|+|MB|的最大值-----------.
4.高5米和3米的旗杆在水平地面上,如果把两旗杆底部的坐标分别定为A(-5,0),B(5,0),则地面上杆顶仰角相等的点的轨迹是------.
【1】联立
直线y=x-1
x^2/a^2-y^2/b^2=1
有(1/a^2-1/b^2)x^2+2x/b^2-1-1/b^2=0
又有MN中点的横坐标为-2/3
所以x1+x2/2=a^2/(a^2-b^2)=-2/3 --------------------(1)
一个焦点为F(√7,0)则有c^2=a^2+b^2=7----------(2)
联立(1)(2)可得a^2=2,b^2=5
所以待求双曲线方程为x^2/2-y^2/5=1
【2】首先连接圆心OB OC 做OK垂直BC于K点
由于A=60°所以∠BOC=120° 等腰三角形OBC的顶角为120° 所以OK=0.5OB=0.5R=0.5
显然K点为BC中点 又有OK=0.5
所以K点轨迹为圆心为原点半径为0.5的圆:x^2+y^2=1/4
【3】自行画出椭圆图形,作出椭圆左焦点F(-4,0) 显然A点为右焦点
通过椭圆第一定义有:MA+MF=2a=10
则MA+MB=2a-MF+MB
在三角形MFB中有:|MB-MF|≤BF=2√10
所以MA+MB=2a-MF+MB∈[10-2√10,10+2√10]
∴(MA+MB)max=(2a-MF+MB)max=10+2√10
【4】若该点在直线AB上 则有2/-10=3/5-x x=20
若该点在[-5,5]内 不妨设仰角为b则有
5cotb+3cotb=10
x=5cotb-5
显然x=1.25
实际上如果在X轴上看 本题只有2个点满足条件
若从空中俯视旗杆 则其实满足条件的地面点轨迹是2条直线
祝学业进步~
1.已知双曲线中心在原点,一个焦点为F(√7,0),直线y=x-1与其交于M、N两点,MN中点的横坐标为-2/3,则此双曲线方程是----------.
2.已知圆x2+y2=1,点A(1,0),△ABC内接于圆,∠BAC=60°,当BC在圆上运动时,BC中点的轨迹方程是----------.
3.已知A(4,0),B(2,2)是椭圆X2/25+Y2/9=1内的点,M是椭圆上的动点,则|MA|+|MB|的最大值-----------.
4.高5米和3米的旗杆在水平地面上,如果把两旗杆底部的坐标分别定为A(-5,0),B(5,0),则地面上杆顶仰角相等的点的轨迹是------.
【1】联立
直线y=x-1
x^2/a^2-y^2/b^2=1
有(1/a^2-1/b^2)x^2+2x/b^2-1-1/b^2=0
又有MN中点的横坐标为-2/3
所以x1+x2/2=a^2/(a^2-b^2)=-2/3 --------------------(1)
一个焦点为F(√7,0)则有c^2=a^2+b^2=7----------(2)
联立(1)(2)可得a^2=2,b^2=5
所以待求双曲线方程为x^2/2-y^2/5=1
【2】首先连接圆心OB OC 做OK垂直BC于K点
由于A=60°所以∠BOC=120° 等腰三角形OBC的顶角为120° 所以OK=0.5OB=0.5R=0.5
显然K点为BC中点 又有OK=0.5
所以K点轨迹为圆心为原点半径为0.5的圆:x^2+y^2=1/4
【3】自行画出椭圆图形,作出椭圆左焦点F(-4,0) 显然A点为右焦点
通过椭圆第一定义有:MA+MF=2a=10
则MA+MB=2a-MF+MB
在三角形MFB中有:|MB-MF|≤BF=2√10
所以MA+MB=2a-MF+MB∈[10-2√10,10+2√10]
∴(MA+MB)max=(2a-MF+MB)max=10+2√10
【4】若该点在直线AB上 则有2/-10=3/5-x x=20
若该点在[-5,5]内 不妨设仰角为b则有
5cotb+3cotb=10
x=5cotb-5
显然x=1.25
实际上如果在X轴上看 本题只有2个点满足条件
若从空中俯视旗杆 则其实满足条件的地面点轨迹是2条直线
祝学业进步~
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 12.当你站在什么地方时,你的前后左右的方向都是北方( )
- 2碳酸氢钠的水解全过程,要有其中的原子守恒、电荷守恒和其中离子的大小关系比较.
- 3造一个过去式的句子
- 4影响雨滴运动快慢的有关因素有哪些?
- 5z=5i/1-2i(i是虚数单位),则z的共轭复数为
- 6解应用题: 2008年夏季奥运会的主办国于2001年7月13日揭晓.当时,为了支持北京申奥,红、绿两支宣传北京申奥万里行车队在距北京3000千米处会合,并同时向北京进发,绿队走完2000千米时
- 7DNA主要分布在细胞核,还分布在什么地方?
- 8已知三角形的ABC内角A,B,C的对边a,b,c成等比数列,求inB/sinC的取值范围?
- 9园的底面周长.与园底面面积怎样算?
- 10怎样才能有序的提高初中生的阅读能力和写作水平?
热门考点
- 11-3 5-7 9-11 13……39-41等于多少
- 2The children in the poor village are in need.(改为同义句)
- 3用适当的介词填空,完成句子
- 4瓷砖面积是怎么算的?
- 5如图所示,bd是平行四边形abcd对角线,ae垂直于e于f,cf垂直于bd于f,求证:四边形aecf是平行四边形
- 6给我几个纽约著名景点名称,要英语的,like the Statue of Liberty(自由女神像),
- 7下面这些句子有特殊含义,将正确的中文意思填入括号内.
- 8颢读音是什么
- 9小明参加考试,语文数学平均分是85,英语数学平均分80,语文英语平均分84,语数英三科成绩各是多少?
- 10一条公路已修了全长的四分之三还剩六十千米没修这条公路全长多少米