题目
f(x1,x2,x3)=2x1x2+2x1x3+2x2x3,求一正交变换x=py,将此二次型化为标准型.那是X
提问时间:2021-03-19
答案
f(x1,x2,x3)=2x1x2+2x1x3+2x2x3对应的实对称矩阵为
A=[(0,1,1)T,(1,0,1) T,(1,1,0) T];下面将其对角化:
先求A的特征值,由|kE-A|=|(k,-1,-1) T,(-1,k,-1) T,(-1,-1,k) T |=(k-2)*(k+1)^2=0
解得:k=2或k=-1(二重).
下求方程(kE-A)Z=0的解向量
对特征值k=2,(2E-A)Z=0解得特征向量Z=(1,1,1)T,
单位化α1=(1/√3,1/√3,1/√3) T.
对特征值k=-1,(-E-A)Z=0解得特征向量Z=(1,-1,0)T或(1,0,-1)T,
Schmidt正交化得
α2=(1/√2,-1/√2,0)T,α3=(1/√6,1/√6,-2/√6) T,
取正交矩阵P=(α1,α2,α3)
=[ (1/√3,1/√3,1/√3) T,(1/√2,-1/√2,0)T,(1/√6,1/√6,-2/√6) T]
则有PTAP=diag(2,-1,-1).
对二次型f(x1,x2,x3)=2x1x2+2x1x3+2x2x3=XTAX作正交变换X=PY得
f(X)=YT(QTAQ)Y=2y1^2-y2^2-y3^2.
得到标准型f(Y),P为所求正交变换.
T代表对矩阵或向量的转置.
建议找本线性代数的书看看,实际上就是实对称矩阵的对角化.过程比较繁琐,建议检验一下.
A=[(0,1,1)T,(1,0,1) T,(1,1,0) T];下面将其对角化:
先求A的特征值,由|kE-A|=|(k,-1,-1) T,(-1,k,-1) T,(-1,-1,k) T |=(k-2)*(k+1)^2=0
解得:k=2或k=-1(二重).
下求方程(kE-A)Z=0的解向量
对特征值k=2,(2E-A)Z=0解得特征向量Z=(1,1,1)T,
单位化α1=(1/√3,1/√3,1/√3) T.
对特征值k=-1,(-E-A)Z=0解得特征向量Z=(1,-1,0)T或(1,0,-1)T,
Schmidt正交化得
α2=(1/√2,-1/√2,0)T,α3=(1/√6,1/√6,-2/√6) T,
取正交矩阵P=(α1,α2,α3)
=[ (1/√3,1/√3,1/√3) T,(1/√2,-1/√2,0)T,(1/√6,1/√6,-2/√6) T]
则有PTAP=diag(2,-1,-1).
对二次型f(x1,x2,x3)=2x1x2+2x1x3+2x2x3=XTAX作正交变换X=PY得
f(X)=YT(QTAQ)Y=2y1^2-y2^2-y3^2.
得到标准型f(Y),P为所求正交变换.
T代表对矩阵或向量的转置.
建议找本线性代数的书看看,实际上就是实对称矩阵的对角化.过程比较繁琐,建议检验一下.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1用回弹法测混凝土强度,回弹仪上面有碳化深度修正系数怎么用啊?
- 2用来到只见造句写景的,不少于20字急!错的别来
- 3a=2×3×5,b=2×5×11,a和b的最大公约数是_,a和b的最小公倍数是_.
- 4若sinθ,cosθ是方程2x2−(3+1)x+m=0的两个根,求sinθ1−cotθ+cosθ1−tanθ的值.
- 5氓的 故事 记叙文 500字
- 6有哪些单词或短语可以表示数量?
- 7“读万卷书”与“行万里路” 阅读答案
- 8求lim(x->1)[(3x-3)tan((π/2)x]
- 9Prices in this shop vary all the way from $50 to$500.(这个句子的谓语动词呢?
- 10已知x,y为有理数,设M=x^2+y^2,N=2xy,则M与N之间大小关系为( )
热门考点