题目
∫ [xln(x+√(1+x^2)]/(1-x^2)^2 dx 求不定积分
最好写下 分部积分后半部分怎么做的
最好写下 分部积分后半部分怎么做的
提问时间:2021-03-19
答案
∫ [xln(x+√(1+x²))]/(1-x²)² dx
=1/2∫ [ln(x+√(1+x²))]/(1-x²)² d(x²)
=-1/2∫ [ln(x+√(1+x²))]/(1-x²)² d(1-x²)
=1/2∫ [ln(x+√(1+x²))] d(1/(1-x²))
=1/2(1/(1-x²))ln(x+√(1+x²))-1/2∫ 1/(1-x²) d[ln(x+√(1+x²))]
由于:[ln(x+√(1+x²))]'=[1/(x+√(1+x²))]*(1+x/√(1+x²))=1/√(1+x²)
=1/2(1/(1-x²))ln(x+√(1+x²))-1/2∫ 1/[(1-x²)√(1+x²)] dx
令x=tanu,则√(1+x²)=secu,dx=sec²udu
=1/2(1/(1-x²))ln(x+√(1+x²))-1/2∫ 1/[(1-tan²u)secu]sec²udu
=1/2(1/(1-x²))ln(x+√(1+x²))-1/2∫ secu/(1-tan²u)du
=1/2(1/(1-x²))ln(x+√(1+x²))-1/2∫ cosu/(cos²u-sin²u)du
=1/2(1/(1-x²))ln(x+√(1+x²))-1/2∫ 1/(cos²u-sin²u)d(sinu)
=1/2(1/(1-x²))ln(x+√(1+x²))-1/2∫ 1/(1-2sin²u)d(sinu)
=1/2(1/(1-x²))ln(x+√(1+x²))+1/4∫ 1/(sin²u-0.5)d(sinu)
由公式:∫ 1/(x²-a²) dx=1/(2a)*ln|(x-a)/(x+a)|+C
=1/2(1/(1-x²))ln(x+√(1+x²))+(1/4)(1/√2)ln|(sinu-√2/2)/(sinu+√2/2)|+C
=1/2(1/(1-x²))ln(x+√(1+x²))+1/(4√2)ln|(2sinu-√2)/(2sinu+√2)|+C
由于tanu=x,则sinu=x/√(1+x²)
=1/2(1/(1-x²))ln(x+√(1+x²))+1/(4√2)ln|(2x/√(1+x²)-√2)/(2x/√(1+x²)+√2)|+C
=1/2(1/(1-x²))ln(x+√(1+x²))+1/(4√2)ln|(2x-√(2+2x²))/(2x+√(2+2x²))|+C
=1/2∫ [ln(x+√(1+x²))]/(1-x²)² d(x²)
=-1/2∫ [ln(x+√(1+x²))]/(1-x²)² d(1-x²)
=1/2∫ [ln(x+√(1+x²))] d(1/(1-x²))
=1/2(1/(1-x²))ln(x+√(1+x²))-1/2∫ 1/(1-x²) d[ln(x+√(1+x²))]
由于:[ln(x+√(1+x²))]'=[1/(x+√(1+x²))]*(1+x/√(1+x²))=1/√(1+x²)
=1/2(1/(1-x²))ln(x+√(1+x²))-1/2∫ 1/[(1-x²)√(1+x²)] dx
令x=tanu,则√(1+x²)=secu,dx=sec²udu
=1/2(1/(1-x²))ln(x+√(1+x²))-1/2∫ 1/[(1-tan²u)secu]sec²udu
=1/2(1/(1-x²))ln(x+√(1+x²))-1/2∫ secu/(1-tan²u)du
=1/2(1/(1-x²))ln(x+√(1+x²))-1/2∫ cosu/(cos²u-sin²u)du
=1/2(1/(1-x²))ln(x+√(1+x²))-1/2∫ 1/(cos²u-sin²u)d(sinu)
=1/2(1/(1-x²))ln(x+√(1+x²))-1/2∫ 1/(1-2sin²u)d(sinu)
=1/2(1/(1-x²))ln(x+√(1+x²))+1/4∫ 1/(sin²u-0.5)d(sinu)
由公式:∫ 1/(x²-a²) dx=1/(2a)*ln|(x-a)/(x+a)|+C
=1/2(1/(1-x²))ln(x+√(1+x²))+(1/4)(1/√2)ln|(sinu-√2/2)/(sinu+√2/2)|+C
=1/2(1/(1-x²))ln(x+√(1+x²))+1/(4√2)ln|(2sinu-√2)/(2sinu+√2)|+C
由于tanu=x,则sinu=x/√(1+x²)
=1/2(1/(1-x²))ln(x+√(1+x²))+1/(4√2)ln|(2x/√(1+x²)-√2)/(2x/√(1+x²)+√2)|+C
=1/2(1/(1-x²))ln(x+√(1+x²))+1/(4√2)ln|(2x-√(2+2x²))/(2x+√(2+2x²))|+C
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1九个小九宫格组成的大九宫格
- 2设f(x)是定义在R上的奇函数,且对任意实数x恒满足f(2+x)=-f(x),当x∈[0,2]时,f(x)=2x-x²
- 3求sinx/x的原函数 就是它的积分.
- 4一个桶里盛了40%的油漆,连桶重5千克,如果盛了60%的油漆,那么连桶重7千克.这个桶重多少千克?
- 5该用什么词语来形容列车
- 6解方程 根号x+5 +根号x-3=4
- 7作文,大自然的声音怎么写
- 8科学家已经为治理黄河设计好了方案.改为把字句
- 9已知∠AOB=80°,过O作射线OC(不同于OA/OB),满足∠AOC=五分之三角BOC,求∠AOC的大小
- 10已知2a的2m+3次方 乘(-a)的二次方 除以(-a的m-1次方) =-2(a的三次方)的m-1次方 除以a.求m的值.
热门考点
- 1由春秋时期的“百家争鸣”到此时的思想的统一,体现了什么品质?
- 2已知椭圆C的两焦点为F1(-1,0),F2(1,0),并且经过点M(1,2分之根号2)
- 3计算:[﹙x/2+3y﹚²﹣﹙y/2﹢x﹚²+﹙3x-y/2﹚²-﹙x/2+3y﹚﹙3y-x2-]÷x/2
- 4关于中学生如何健康饮食英语作文
- 5在你的生活中哪些地方用到万以上的数?请你写出其中的四个. _、_、_、_.
- 6用0.1mol/L硫代硫酸钠滴定液滴定游离碘,加淀粉指示剂不显蓝色...
- 7一堆钢管堆成截面为梯形的形状,最上层12根,最下层28根,每相邻两层相差1根,这堆钢管共有几根?
- 8某商品的进货价为每件x元,零售价为每件900元,为了适应市场竞争,商店按零售价的九折且让利40元销售,仍可获利10%,则x为( ) A.700 B.约773 C.约736 D.约856
- 9field是什么意思
- 10(39又2分之1)²-(10又2分之1)²简便计算