题目
(1)观察与发现:小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图①);在第一次的折叠基础上第二次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图②).小明认为△AEF是等腰三角形,你同意吗?请说明理由.
(2)实践与运用:将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图③);再沿过点E的直线折叠,使点D落在BE上的点D′处,折痕为EG(如图④);再展平纸片(如图⑤).求图⑤中∠α的大小.
(2)实践与运用:将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图③);再沿过点E的直线折叠,使点D落在BE上的点D′处,折痕为EG(如图④);再展平纸片(如图⑤).求图⑤中∠α的大小.
提问时间:2021-03-19
答案
(1)同意.如图,设AD与EF交于点G.
由折叠知,AD平分∠BAC,所以∠BAD=∠CAD.
又由折叠知,∠AGE=∠DGE,∠AGE+∠DGE=180°,
所以∠AGE=∠AGF=90°,
所以∠AEF=∠AFE.所以AE=AF,
即△AEF为等腰三角形.
(2)由折叠知,四边形ABFE是正方形,∠AEB=45°,
所以∠BED=135度.
又由折叠知,∠BEG=∠DEG,
所以∠DEG=67.5度.
从而∠α=67.5°-45°=22.5°.
由折叠知,AD平分∠BAC,所以∠BAD=∠CAD.
又由折叠知,∠AGE=∠DGE,∠AGE+∠DGE=180°,
所以∠AGE=∠AGF=90°,
所以∠AEF=∠AFE.所以AE=AF,
即△AEF为等腰三角形.
(2)由折叠知,四边形ABFE是正方形,∠AEB=45°,
所以∠BED=135度.
又由折叠知,∠BEG=∠DEG,
所以∠DEG=67.5度.
从而∠α=67.5°-45°=22.5°.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
- 1英语作文!周末,同学们准备开一次聚会,在聚会上,大家想自己动手制作一些喜欢吃的东
- 2在同一平面直角坐标系中,画出函数y=x+1,y=x-1,y=-x+1,y=-x-1的图像,这四条
- 3太阳和月亮在哪天同时升起?
- 4急 想、求《生命 和谐 关爱》为题的作文
- 58 4 1 3 5 5 36 -6 2 2 3 2 5 5
- 6这样能验证氢气的密度比空气小吗
- 7We will talk over the problem latter.
- 8整数怎么化成带分数
- 9Do you have any other hobbies?改为同义句Do you have( )( )hobbies?
- 10晚会帷幕徐徐拉开,主持人姿态优美地步出舞台,不小心跌倒在地,观众哗然.此时,主持人迅速站起,神态自若的说了一句话,场内立刻掌声四起.你最喜欢主持人说的那一句话.
热门考点