当前位置: > 求助离散数学题(群论)...
题目
求助离散数学题(群论)
设z为整数集,在z上定义二元运算p,取x,y属于Z,有x p y=x+y-2,那么z与运算p能否构成群?为什么?

提问时间:2021-03-19

答案
1 证明 (a p b) p c = a p (b p c) a,b,c属于z
2 证明存在一个单位元
3 证明a存在逆a-1,使得a p a-1 = a-1 p a = 单位元,(这里a-1指a的逆,写法是a的-1次方)
如果z与运算p满足上面三个条件,那么z与运算p能构成群.
证明如下:
1 对于任意a,b,c属于z,有:
(a p b) p c
=(a+b-2) p c
=(a+b-2)+c-2
=a+(b+c-2)-2
=a p (b+c-2)
=a p (b p c)
2 易知,存在2属于z,使得对于任意a属于z,有:
2 p a = 2+a-2 = a
a p 2 = a+2-2 = a
既存在单位元2,使得2 p a = a p 2 = a
3 易知,存在a的逆4-a,使得:
a p (4-a) =(4-a) p a = 2
z与运算p满足上面三个条件,所以z与运算p能构成群
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.