当前位置: > 求满足下列各条件的椭圆的标准方程...
题目
求满足下列各条件的椭圆的标准方程
(1)短轴的一个端点与两焦点组成一个正三角形,且焦点的同侧顶点的距离为√3
(2)经过点(3,0),离心率e=√6/3

提问时间:2021-03-19

答案
解 由已知,可得
短轴的一个端点到焦点的距离为a,两个焦点的距离为2c
又因短轴的一个端点与两焦点组成一个正三角形
所以a=2c 又因a-c=√3
所以a²=12,c²=3,c²=9
椭圆的方程为x²/12+y²/9=0
因为离心率为e=√6/3
所以将椭圆的方程设出来
将其中的a²和b²全部换成c²来代替
最后将点(3,0),带入方程中,解出c,求出方程
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.