当前位置: > 证明:若α1,α2线性无关,则α1+α2,α1-α2也线性无关...
题目
证明:若α1,α2线性无关,则α1+α2,α1-α2也线性无关

提问时间:2021-03-19

答案
反证
假如
α1+α2,α1-α2也线性相关
则存在不全为0的 k1 k2使得
k1(a1+a2)+k2(a1-a2)=0
(k1+k2)a1+(k1-k2)a2=0
因为 k1 k2不全为0,所以(k1+k2)和(k1-k2)也不全为0
所以a1和a2线性相关
矛盾
得证
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.