当前位置: > 导数应用问题...
题目
导数应用问题
求函数y=x√(1-x²)的最大值

提问时间:2021-03-18

答案
y=x√(1-x2)
=>
y'=x(√(1-x2))'+√(1-x2)
=>
y'=x*0.5*(-2x)/√(1-x2)+√(1-x2)=-x2/√(1-x2)+√(1-x2)
令y'=0
=>
-x2+1-x2=0
=>
x=√2/2
此时,导数符号为左正右负
故为最大值
ymax=√2/2*√2/2=1/2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.