题目
操作与探究
探索:在如图1至图3中,△ABC的面积为a.
(1)如图1,延长△ABC的边BC到点D,使CD=BC,连接DA、若△ACD的面积为S1,则S1=______(用含a的代数式表示);
(2)如图2,延长△ABC的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连接DE、若△DEC的面积为S2,则S2=______(用含a的代数式表示);
(3)在图2的基础上延长AB到点F,使BF=AB,连接FD,FE,得到△DEF(如图3)、若阴影部分的面积为S3,则S3=______(用含a的代数式表示).
发现:像上面那样,将△ABC各边均顺次延长一倍,连接所得端点,得到△DEF(如图3),此时,我们称△ABC向外扩展了一次、可以发现,扩展一次后得到的△DEF的面积是原来△ABC面积的______倍.
探索:在如图1至图3中,△ABC的面积为a.
(1)如图1,延长△ABC的边BC到点D,使CD=BC,连接DA、若△ACD的面积为S1,则S1=______(用含a的代数式表示);
(2)如图2,延长△ABC的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连接DE、若△DEC的面积为S2,则S2=______(用含a的代数式表示);
(3)在图2的基础上延长AB到点F,使BF=AB,连接FD,FE,得到△DEF(如图3)、若阴影部分的面积为S3,则S3=______(用含a的代数式表示).
发现:像上面那样,将△ABC各边均顺次延长一倍,连接所得端点,得到△DEF(如图3),此时,我们称△ABC向外扩展了一次、可以发现,扩展一次后得到的△DEF的面积是原来△ABC面积的______倍.
提问时间:2021-03-18
答案
(1)∵CD=BC,△ABC的面积为a,△ABC与△ACD的高相等,
∴S1=S△ABC=a;
(2)分别过A、E作AG⊥BD,EF⊥BD,G、F为垂足,则AG∥EF,
∵A为CE的中点,∴AG=
EF,
∵BC=CD,
∴S2=2S1=2a;
(3)∵△BDF的边长BD是△ABC边长BC的2倍,两三角形的两边互为另一三角形两边的延长线,
∴S△BDF=2S△ABC,
∵△ABC面积为a,∴S△BDF=2a.
同理可得,S△ECD=2a,S△AEF=2a,∴S3=S△BDF+S△ECD+S△AEF=2a+2a+2a=6a.
∵S3=S△BDF+S△ECD+S△AEF=6a,
∴S△EDF=S3+S△ABC=6a+a=7a,
∴
=
=7,
∴扩展一次后得到的△DEF的面积是原来△ABC面积的7倍.
∴S1=S△ABC=a;
(2)分别过A、E作AG⊥BD,EF⊥BD,G、F为垂足,则AG∥EF,
∵A为CE的中点,∴AG=
1 |
2 |
∵BC=CD,
∴S2=2S1=2a;
(3)∵△BDF的边长BD是△ABC边长BC的2倍,两三角形的两边互为另一三角形两边的延长线,
∴S△BDF=2S△ABC,
∵△ABC面积为a,∴S△BDF=2a.
同理可得,S△ECD=2a,S△AEF=2a,∴S3=S△BDF+S△ECD+S△AEF=2a+2a+2a=6a.
∵S3=S△BDF+S△ECD+S△AEF=6a,
∴S△EDF=S3+S△ABC=6a+a=7a,
∴
S△DEF |
S△ABC |
7a |
a |
∴扩展一次后得到的△DEF的面积是原来△ABC面积的7倍.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1某同学在家做如图所示实验:在一个玻璃容器中加入100mL水,向水中放入一块糖,在容器外壁沿液面画一条水平线,过一会儿发现糖块溶解,液面比原来水平线降低了.通过这一现象请你推
- 2在平面直角坐标系中圆P与X轴相切于原点O,平行于Y轴的直线交圆P于M,N两点.若M的坐标是(2,
- 3YB435和YB415是什么意思啊?
- 4两个码头相距432千米,轮船顺水行这段路程要16小时,逆水每小时比顺水少行9千米,逆水比顺水多用_小时.
- 52006.2004.2000.1992.1976有啥规律
- 6《别董大》和《送元二使安西》这两首诗都是写什么?
- 7有关成字的成语(cheng)!急用`````
- 8westlife的soledad汉语是什么意思啊?
- 9开水能二次烧开喝吗?
- 10一弧长为18.84cm,这条弧的半径为8厘米,求弧所对圆心角为()度