当前位置: > 求解∫(3sinx+2cosx)/(5sinx+4cosx)dx...
题目
求解∫(3sinx+2cosx)/(5sinx+4cosx)dx

提问时间:2021-03-18

答案
这种题目有一个通用的解法
令3sinx+2cosx=A(5sinx+4cosx)+B(5sinx+4cosx)'
整理得
3sinx+2cosx=(5A-4B)sinx+(4A+5B)cosx

5A-4B=3
4A+5B=2
解得
A=23/41,B=-2/41
所以
∫(3sinx+2cosx)/(5sinx+4cosx)dx
=∫[23/41(5sinx+4cosx)-2/41(5sinx+4cosx)']/(5sinx+4cosx)dx
=∫[23/41-2/41(5sinx+4cosx)'/(5sinx+4cosx)]dx
=23x/41-2/41ln(5sinx+4cosx)+C
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.