当前位置: > 设 f(x,y)=∫0积到√xy〖e^(〖-2t〗^2 ) dt(x>0,y>0) 〗,求df(x,y)...
题目
设 f(x,y)=∫0积到√xy〖e^(〖-2t〗^2 ) dt(x>0,y>0) 〗,求df(x,y)
设z=f(x,y)的偏导数在开区间D内存在且有界,证明z=f(x,y)在D内连续

提问时间:2021-03-18

答案
1、被积函数就是e^(4t^2)?
df(x,y)=af/ax*dx+af/ay*dy
=0.5e^(4xy)根号(y/x)dx+0.5e^(4xy)根号(x/y)dy.
2、任意取定(a,b),|f(a+dx,b+dy)--f(a,b)|
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.