当前位置: > 过点(3,4)和双曲线x^2/6-y^2/3=1两焦点的圆的方程...
题目
过点(3,4)和双曲线x^2/6-y^2/3=1两焦点的圆的方程

提问时间:2021-03-18

答案
双曲线x^2/6-y^2/3=1
c^2=a^2+b^2=6+3=9
两焦点为:(-3,0),(3,0)
显然圆心在y轴上,所以
可设圆的方程为:
(x-0)^2+(y-a)^2=r^2
9+a^2=r^2
9+(4-a)^2=r^2
8a-16=0
a=2,所以r^2=9+4=13
所以圆的方程为:
(x-0)^2+(y-2)^2=13
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.