当前位置: > y=e^x/(1+x)的水平渐近线怎么求?...
题目
y=e^x/(1+x)的水平渐近线怎么求?

提问时间:2021-03-17

答案
当x趋向与无穷时,如果limf(x)=a,则y=a就是f(x)的一条水平渐近线了.
当x趋向与无穷时,limy=lim[e^x/(1+x)]
根据泰勒公式有:e^x=1+x+0(x).
所以lim[e^x/(1+x)]=lim[1+x+0(x)]/(1+x)=1.
所以y=e^x/(1+x)的水平渐近线是y=1.
注意,不能用罗必达法则.因为用罗必达法则会发现求不了极限.但这不意味着极限就不存在.这是罗必达法则的缺陷所在.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.