当前位置: > 设f(x)在(-∞,+∞)上连续,且F(x)=1/2a ∫f(t)dt,a>0,上限x+a,下限x-a,求a趋于0时,F(x)的极限....
题目
设f(x)在(-∞,+∞)上连续,且F(x)=1/2a ∫f(t)dt,a>0,上限x+a,下限x-a,求a趋于0时,F(x)的极限.

提问时间:2021-03-17

答案
令G(x)是∫f(t)dt
F(x)=1/2a ∫f(t)dt=1/2a(G(x+a)-G(x-a))
当a趋于0时,就是求G(x)的导数,那就是f(x)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.