题目
平面向量
已知在三角形ABC中,M是BC的中点,点N在边AC上,且Ac=2NC,AM与BN相交于P,求AP与PM的比值.
图自己可以画的
已知在三角形ABC中,M是BC的中点,点N在边AC上,且Ac=2NC,AM与BN相交于P,求AP与PM的比值.
图自己可以画的
提问时间:2021-03-17
答案
向量法:
设BM=e1,CN=e2,
则AM=AC+CM=-3e2-e1,BN=2e1+e2.∵A、P、M和B、P、N分别共线,
∴存在λ、μ∈R,使得
AP=λAM=-λe1-3λe2,BP=μ BN=2μe1+μe2.
故BA=BP-AP=(λ+2μ)e1+(3λ+μ)e2.而BA=BC+CA=2e1+3e2,
由基本定理得 λ+2μ=2 3λ+μ=3 λ=4/5 μ=3/5
∴AP∶PM=4∶1.
几何法:
过M做MD//BN交AC于D
M是BC的中点
==>DC=DN =(1/2)NC
AN=2NC ===>DN=(1/4)AN
PN//MD ===>AP:PM =AN:ND =4:1
设BM=e1,CN=e2,
则AM=AC+CM=-3e2-e1,BN=2e1+e2.∵A、P、M和B、P、N分别共线,
∴存在λ、μ∈R,使得
AP=λAM=-λe1-3λe2,BP=μ BN=2μe1+μe2.
故BA=BP-AP=(λ+2μ)e1+(3λ+μ)e2.而BA=BC+CA=2e1+3e2,
由基本定理得 λ+2μ=2 3λ+μ=3 λ=4/5 μ=3/5
∴AP∶PM=4∶1.
几何法:
过M做MD//BN交AC于D
M是BC的中点
==>DC=DN =(1/2)NC
AN=2NC ===>DN=(1/4)AN
PN//MD ===>AP:PM =AN:ND =4:1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 11,2-二溴乙烷和溴蒸气发生取代反应,完全取代的化学方程式
- 2细胞体积越大是否越有利于细胞和周围环境进行物质交换
- 3熊妈妈把一个蛋糕平均切成8块.熊哥哥吃了3块,熊弟弟吃了2块,他俩一共吃了这个蛋糕的几分之几?还剩几分之几没吃?
- 4The girl to whom I spoke is my cousin.哪个是主语哪个是从句?我老觉得子句子怪怪的,
- 5X除以3=3/4 8X=4/7 12X+5/9=13/9
- 6一个六棱柱侧面的形状是什么?经过每个顶点有几条棱,长度一定相等的棱是什么棱?
- 7小李用3小时加工了5个零件,小王用4小时加工了7个零件,谁的工作效率高
- 8y=sin(2x+π/6)+1/2如何由y=sinx(x∈R)变换得到?
- 9一个长方形的长是17与51的最大公因数(单位:厘米),宽是4和6的最小公倍数(单位:厘米),这个长方形的周长和面积分别是多少?
- 10初中英语不可数名词