当前位置: > f(x)=1/|x-2|(x不等于2),f(2)=1,若关于x的方程f^2(x)+bf(x)+c=0恰有5个不同的实...
题目
f(x)=1/|x-2|(x不等于2),f(2)=1,若关于x的方程f^2(x)+bf(x)+c=0恰有5个不同的实
说的详细点
f(x)=1/|x-2|(x不等于2),f(2)=1,若关于x的方程f^2(x)+bf(x)+c=0恰有5个不同的实根,f(x1+x2+x3+x4+x5)等于?刚才没在意 把后面的弄掉了

提问时间:2021-03-17

答案
答案是1/8;
对于f^2(x)+bf(x)+c=0来说,f(x)最多只有2解,又f(x)=1/|x-2|(x不等于2),当x不等于2时,x最多四解.
而题目要求5解,即可推断f(2)为一解!
假设f(x)的1解为A,得f(x)=1/|x-2|=A;
算出x1=2+A,x2=2-A,x1+x2=4;
同理:x3+x4=4;
所以:x1+x2+x3+x4+x5=4+4+2=10;
f(x1+x2+x3+x4+x5)=1/8.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.