当前位置: > 令f(x),g(x)是两个多项式,并且f( x3)+g(x3) 可以被x2+x+1 整除.证明:f(1)=g(1) =0(以上数字为上标...
题目
令f(x),g(x)是两个多项式,并且f( x3)+g(x3) 可以被x2+x+1 整除.证明:f(1)=g(1) =0(以上数字为上标

提问时间:2021-03-17

答案
题目错了,反例
f(x)=x^2
g(x)=-x
应该是证明:f(1)+g(1) =0
设f( x^3)+g(x^3)=f1(x)(x^2+x+1)
[f( x^3)+g(x^3)](x-1)=f1(x)(x^2+x+1)(x-1)
[f( x^3)+g(x^3)](x-1)=f1(x)(x^3-1)
所以e^(i*2pi/3)是上面右边多项式的根,i是虚数单位.
从而e^(i*2pi/3)是[f( x^3)+g(x^3)]的根
带入即得f(1)+g(1) =0
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.