当前位置: > dy/dx=1/(x+y).按一阶线性方程求解...
题目
dy/dx=1/(x+y).按一阶线性方程求解

提问时间:2021-03-17

答案
dy/dx=1/(x+y)
dx/dy=x+y
x'-x=y  (1)
特征方程r-1=0
r=1
齐次通解为x=Ce^y
设特解是x=ay+b
x'=a
代入(1)得
a-(ay+b)=y
比较系数得
a=-1,b=1
所以特解是x=-y+1
所以方程的通解是
x=Ce^y-y+1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.