当前位置: > 证明偶数阶群必有2阶子群...
题目
证明偶数阶群必有2阶子群
如题

提问时间:2021-03-17

答案
证明:群中的每一个元素的阶均不为0 且单位元是其中惟一的阶为1的元素.因为任一阶大于2 的元素和它的逆元的阶相等.且当一个元素的阶大于2 时,其逆元和它本身不相等.故阶大于2 的元素是成对的.从而阶为1的元素与阶大于2 的元素个数之和是奇数.
因为该群的阶是偶数,从而它一定有阶为2 的元素.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.