当前位置: > 在等边△ABC的两边AB、AC所在直线上分别有两点M、N,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC.探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量...
题目
在等边△ABC的两边AB、AC所在直线上分别有两点M、N,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC.探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系及△AMN的周长Q与等边△ABC的周长L的关系.
作业帮
(1)如图1,当点M、N边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是 ___ ;此时
Q
L
= ___ ;
(2)如图2,点M、N边AB、AC上,且当DM≠DN时,猜想(1)问的两个结论还成立吗?写出你的猜想并加以证明;
(3)如图3,当M、N分别在边AB、CA的延长线上时,若AN=x,则Q= ___ (用x、L表示).

提问时间:2021-03-16

答案
(1)如图,BM、NC、MN之间的数量关系BM+NC=MN.
此时
Q
L
=
2
3

(2)猜想:结论仍然成立.
证明:如图,延长AC至E,使CE=BM,连接DE.作业帮
∵BD=CD,且∠BDC=120°,
∴∠DBC=∠DCB=30°.
又∵△ABC是等边三角形,
∴∠MBD=∠NCD=90°.
在△MBD与△ECD中:
BM=CE
∠MBD=∠ECD
BD=DC

∴△MBD≌△ECD(SAS).
∴DM=DE,∠BDM=∠CDE.
∴∠EDN=∠BDC-∠MDN=60°.
在△MDN与△EDN中:
DM=DE
∠MDN=∠EDN
DN=DN

∴△MDN≌△EDN(SAS).作业帮
∴MN=NE=NC+BM.
△AMN的周长Q=AM+AN+MN
=AM+AN+(NC+BM)
=(AM+BM)+(AN+NC)
=AB+AC
=2AB.
而等边△ABC的周长L=3AB.
Q
L
=
2AB
3AB
=
2
3

(3)如图,当M、N分别在AB、CA的延长线上时,若AN=x,
则Q=2x+
2
3
L
(用x、L表示).
(1)如果DM=DN,∠DMN=∠DNM,因为BD=DC,那么∠DBC=∠DCB=30°,也就有∠MBD=∠NCD=60+30=90°,直角三角形MBD、NCD中,因为BD=CD,DM=DN,根据HL定理,两三角形全等.那么BM=NC,∠BMD=∠DNC=60°,三角形NCD中,∠NDC=30°,DN=2NC,在三角形DNM中,DM=DN,∠MDN=60°,因此三角形DMN是个等边三角形,因此MN=DN=2NC=NC+BM,三角形AMN的周长Q=AM+AN+MN=AM+AN+MB+NC=AB+AC=2AB,三角形ABC的周长L=3AB,因此Q:L=2:3.
(2)如果DM≠DN,我们可通过构建全等三角形来实现线段的转换.延长AC至E,使CE=BM,连接DE.(1)中我们已经得出,∠MBD=∠NCD=90°,那么三角形MBD和ECD中,有了一组直角,MB=CE,BD=DC,因此两三角形全等,那么DM=DE,∠BDM=∠CDE,∠EDN=∠BDC-∠MDN=60°.三角形MDN和EDN中,有DM=DE,∠EDN=∠MDN=60°,有一条公共边,因此两三角形全等,MN=NE,至此我们把BM转换成了CE,把MN转换成了NE,因为NE=CN+CE,因此NM=BM+CN.Q与L的关系的求法同(1),得出的结果是一样的.
(3)我们可通过构建全等三角形来实现线段的转换,思路同(2)过D作∠CDN=∠MDB,三角形BDM和CDH中,由(1)中已经得出的∠DCH=∠MBD=90°,我们做的角∠BDM=∠CDH,BD=CD因此两三角形全等(ASA).那么BM=CH,DM=DH,三角形MDN和NDH中,已知的条件有MD=DH,一条公共边ND,要想证得两三角形全等就需要知道∠MDN=∠HDN,因为∠CDH=∠MDB,因此∠MDH=∠BDC=120°,因为∠MDN=60°,那么∠NDH=120°-60°=60°,因此∠MDN=∠NDH,这样就构成了两三角形全等的条件.三角形MDN和DNH就全等了.那么NM=NH=AN+AC-BM,三角形AMN的周长Q=AN+AM+MN=AN+AB+BM+AN+AC-BM=2AN+2AB.因为AN=x,AB=
1
3
L,因此三角形AMN的周长Q=2x+
2
3
L.

["\u5168\u7b49\u4e09\u89d2\u5f62\u7684\u5224\u5b9a\u4e0e\u6027\u8d28"]

本题考查了三角形全等的判定及性质;题目中线段的转换都是根据全等三角形来实现的,当题中没有明显的全等三角形时,我们要根据条件通过作辅助线来构建于已知和所求条件相关的全等三角形.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.