题目
高等代数问题:d(x)=f(x)v(x)+g(x)u(x),d(x)是f(x)与g(x)的公因式,怎样证明d(x)是最大公因式
提问时间:2021-03-16
答案
直接按定义证就可以了(能被任意一个公因式整除的公因式是最大公因式)
对f(x)、g(x)的任意一个公因式c(x),有c(x)|f(x)、c(x)|g(x),所以c(x)|f(x)v(x)+g(x)u(x),即c(x)|d(x),所以d(x)是f(x)、g(x)的最大公因式
对f(x)、g(x)的任意一个公因式c(x),有c(x)|f(x)、c(x)|g(x),所以c(x)|f(x)v(x)+g(x)u(x),即c(x)|d(x),所以d(x)是f(x)、g(x)的最大公因式
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点