题目
设f(x)=x2+ax+b,且1≤f(-1)≤2,2≤f(1)≤4,则点(a,b)在aob平面上的区域的面积是( )
A.
A.
1 |
2 |
提问时间:2021-03-16
答案
∵f(x)=x2+ax+b,
由1≤f(-1)≤2得:1≤1-a+b≤2,即0≤-a+b≤1
由2≤f(1)≤4得:2≤1+a+b≤4,即1≤a+b≤3
则点(a,b)在aOb平面上的区域如下图中阴影所示:
由图可得该区域是一个长和宽分别为
由1≤f(-1)≤2得:1≤1-a+b≤2,即0≤-a+b≤1
由2≤f(1)≤4得:2≤1+a+b≤4,即1≤a+b≤3
则点(a,b)在aOb平面上的区域如下图中阴影所示:
由图可得该区域是一个长和宽分别为