题目
如图1,在等边△ABC中,AD⊥BC于点D,一个直径与AD相等的圆与BC相切于点E、与AB相切于点F,连接EF.
(1)判断EF与AC的位置关系(不必说明理由);
(2)如图2,过E作BC的垂线,交圆于G,连接AG,判断四边形ADEG的形状,并说明理由;
(3)求证:AC与GE的交点O为此圆的圆心.
(1)判断EF与AC的位置关系(不必说明理由);
(2)如图2,过E作BC的垂线,交圆于G,连接AG,判断四边形ADEG的形状,并说明理由;
(3)求证:AC与GE的交点O为此圆的圆心.
提问时间:2021-03-16
答案
(1)EF∥AC;
(2)四边形ADEG为矩形;
理由:
∵EG⊥BC,E为切点,
∵BC为圆O的切线,
∴EG为直径,
∴EG=AD;
又∵AD⊥BC,EG⊥BC,
∴AD∥EG,
由EG=AD,AD∥EG,
得出四边形ADEG为平行四边形,
∵∠ADE=90°,
∴平行四边形ADEG为矩形;
(3)证明:连接FG,由(2)可知EG为直径,
∴FG⊥EF;
又由(1)可知EF∥AC,
∴AC⊥FG;
又∵四边形ADEG为矩形,
∴EG⊥AG,
∴AG是已知圆的切线;
∵AF=AG,
∴AC是FG的垂直平分线,故AC必过圆心,(从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角,根据等腰三角形三线合一定理即可得出AC垂直平分FG)
∴圆心O就是AC与EG的交点.
(2)四边形ADEG为矩形;
理由:
∵EG⊥BC,E为切点,
∵BC为圆O的切线,
∴EG为直径,
∴EG=AD;
又∵AD⊥BC,EG⊥BC,
∴AD∥EG,
由EG=AD,AD∥EG,
得出四边形ADEG为平行四边形,
∵∠ADE=90°,
∴平行四边形ADEG为矩形;
(3)证明:连接FG,由(2)可知EG为直径,
∴FG⊥EF;
又由(1)可知EF∥AC,
∴AC⊥FG;
又∵四边形ADEG为矩形,
∴EG⊥AG,
∴AG是已知圆的切线;
∵AF=AG,
∴AC是FG的垂直平分线,故AC必过圆心,(从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角,根据等腰三角形三线合一定理即可得出AC垂直平分FG)
∴圆心O就是AC与EG的交点.
(1)根据∠EFB与∠FEB都是弦切角,可得△ABC是等边三角形,∠ABC=∠BAC=∠ACB=60°,即△BFE为等边三角形,所以求得∠BAC=∠BFE,∠BCA=∠BEF,可证明EF∥AC;
(2)根据圆切BC于E,EG为直径,AD=EG,AD⊥BC,可判定四边形ADEG为矩形;
(3)由(1)(2)的结论,证明AC垂直平分FG;再根据垂径定理,可知AC必过圆心,又EG为直径,所以AC与GE的交点O为此圆的圆心.
(2)根据圆切BC于E,EG为直径,AD=EG,AD⊥BC,可判定四边形ADEG为矩形;
(3)由(1)(2)的结论,证明AC垂直平分FG;再根据垂径定理,可知AC必过圆心,又EG为直径,所以AC与GE的交点O为此圆的圆心.
切线的性质;等边三角形的性质;矩形的判定;垂径定理.
本题综合考查了切线的性质和垂径定理.要熟练掌握矩形的判定和圆中的有关性质才能灵活的解题.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1三相交流电相位差为120°,怎么将同一个220v交流电的相位差变成90°?
- 2吾日三省吾身这一段的意思
- 3打印一份书稿,如果每小时打印2400字,8小时可以完成,如果要求在6小时内完成,每小时必须多打印多少字?
- 4存在先于本质这句话怎么理解?
- 5已知多项式2x的4次方-3x的3次方+ax的2次方+7x+b能被x的2次方+x-2整除,求a/b
- 6The Grand Duel
- 7回答好了加100分
- 8已知x,y互为相反数,且x≠0,a,b互为倒数,|n|=2 求代数式x-n/ab-(-y)+y/x的值
- 9某商场计划投入一笔资金采购一批紧俏商品,经市场调研发现,如果本月初出售,可获利10%,然后将本利再投资其他商品,到下月初又可获利10%;如果下月初出售可获利25%,但要支付仓储费8
- 10一个重200N的小孩儿从高2m长5m的滑梯上滑下,问重力做功为多少J?