当前位置: > 如图,在等腰△ABC中,AC=BC=10,以BC为直径作⊙O交AB于点D,交AC于点G,DF⊥AC于F,交CB的延长线于点E. (1)求证:直线EF是⊙O的切线; (2)若sin∠E=2/5,求AB的...
题目
如图,在等腰△ABC中,AC=BC=10,以BC为直径作⊙O交AB于点D,交AC于点G,DF⊥AC于F,交CB的延长线于点E.

(1)求证:直线EF是⊙O的切线;
(2)若sin∠E=
2
5
,求AB的长.

提问时间:2021-03-16

答案
(1)证明:作业帮连接OD,
∵AC=BC,
∴∠ABC=∠BAC,
∵OD=OB,
∴∠ABC=∠ODB,
∴∠BAC=∠BDO,
∴OD∥AC,
∵DF⊥AC,
∴OD⊥DF,
∵OD为半径,
∴直线EF是⊙O的切线;
(2) 作业帮连接BG,
∵BC是⊙O直径,
∴∠BGC=90°,
∵DF⊥AC,
∴∠DFC=90°=∠BGC,
∴BG∥EF,
∴∠E=∠GBC,
∵sin∠E=
2
5

∴sin∠GBC=
2
5
=
CG
BC

∵BC=10,
∴CG=4,
∴AG=10-4=6,由勾股定理得:BG=
BC2-CG2
=2
21

在Rt△BGA中,由勾股定理得:AB=
BG2+AG2
=
(2
21
)2+62
=2
30
,即AB=2
30
(1)连接OD,根据等腰三角形性质求出∠A=∠ABC=∠ODB,推出OD∥AC,推出OD⊥DF,根据切线判定推出即可;
(2)连接BG,推出BG∥EF,推出∠E=∠GBC,根据已知推出sin∠GBC=
2
5
=
CG
BC
,求出CG,求出AG,根据勾股定理求出BG,在△BGA中,根据勾股定理求出AB即可.

切线的判定;等腰三角形的性质;圆周角定理;解直角三角形.

本题考查了勾股定理,切线的判定,平行线的性质和判定,解直角三角形等知识点的综合运用,题目综合性比较强,有一定的难度.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.