当前位置: > 若对一切x∈[0,1],恒有x^2*cosθ-x(1-x)+(1-x)^2*sinθ>0成立,求θ的取值范围?...
题目
若对一切x∈[0,1],恒有x^2*cosθ-x(1-x)+(1-x)^2*sinθ>0成立,求θ的取值范围?

提问时间:2021-03-16

答案
首先
把x=0代入,sinθ>0
把x=1代入,cosθ>0
由此可以确定 θ在第一象限.
把f(x)=x^2*cosθ-x(1-x)+(1-x)^2*sinθ 展开成x的二次多项式
f(x)=(cosθ+sinθ+1)x^2-(1+2sinθ)x+sinθ
它的 a=(cosθ+sinθ+1)>0,b=-(1+2sinθ)<0,c=sinθ>0
所以它是开口朝上的抛物线;
对称轴 -b/2a=(1+2sinθ)/2(cosθ+sinθ+1)<1
所以抛物线的最低点在(0,1)间;
要使 对于一切x∈[0,1],f(x)>0恒成立.
则要 Δ=b^2-4ac<0 恒成立
把 a,b,c代入,并化简得:
sin(2θ)>1/2
=> (5π/6+2kπ)>2θ>(π/6+2kπ) k为整数
=> (5π/12+kπ)>θ>(π/12+kπ)
结合前面的 θ在第一象限,θ的取值范围是:
(5π/12+2kπ)>θ>(π/12+2kπ)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.