当前位置: > 平面内一条直线把平面分成2部分,2条相交直线把平面分成4部分,1个交点;3条相交直线最多把平面分成7部分,3个交点;试猜想:n条相交直线最多把平面分成n2+n+22n2+n+22部分,n(n−1)2n...
题目
平面内一条直线把平面分成2部分,2条相交直线把平面分成4部分,1个交点;3条相交直线最多把平面分成7部分,3个交点;试猜想:n条相交直线最多把平面分成
n2+n+2
2
n2+n+2
2
部分,
n(n−1)
2
n(n−1)
2
个交点.

提问时间:2021-03-16

答案
1条直线,将平面分为两个区域;
2条直线,较之前增加1条直线,增加1个交点,增加了2个平面区域;
3条直线,与之前两条直线均相交,增加2个交点,增加了3个平面区域;
4条直线,与之前三条直线均相交,增加3个交点,增加了4个平面区域;

n条直线,与之前n-1条直线均相交,增加n-1个交点,增加n个平面区域;
所以n条直线分平面的总数为1+(1+2+3+4+5+6+7+8+…n)=
n2+n+2
2

所以共有1+2+3+4+5+6+7+8+…n-1=
n(n−1)
2

答案为
n2+n+2
2
n(n−1)
2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.